Further development and validation of empirical scoring functions for structure-based binding affinity prediction
نویسندگان
چکیده
New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes. X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.
منابع مشابه
CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
Protein-ligand docking is a computational method to identify the binding mode of a ligand and a target protein, and predict the corresponding binding affinity using a scoring function. This method has great value in drug design. After decades of development, scoring functions nowadays typically can identify the true binding mode, but the prediction of binding affinity still remains a major prob...
متن کاملPHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements
Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Prot...
متن کاملAn iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 22...
متن کاملDevelopment of target-biased scoring functions for protein-ligand docking
Accurate scoring of protein-ligand interactions for docking, binding-affinity prediction and virtual screening campaigns is still challenging. Despite great efforts, the performance of existing scoring functions strongly depends on the target structure under investigation. Recent developments in the direction of target-classspecific scoring methods and machine-learning-based procedures reveal s...
متن کاملCombined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict the binding affinity of ligands in the CSAR-NRC data sets. One reported here for the first time employs multiple chemical-geometrical descriptors of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computer-aided molecular design
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2002